

# **3rd INTERNATIONAL CONFERENCE** on Sustainable Solid Waste Management

Production of high value added carbonate fillers from the treatment of white calcitic marble waste: the case of Eastern Macedonia and Thrace of Greece

Chalkiopoulou, F.<sup>(1)\*</sup>, Chatzipanagis I.<sup>(2)</sup>, Valta K.<sup>(1)</sup>, Christidis, C.<sup>(2)</sup>



- (1) Institute of Geology & Mineral Exploration (IGME), Mineral Processing Department, Athens, Greece
- (2) Institute of Geology & Mineral Exploration (IGME), Department of Central Macedonia Department, Thessaloniki, Greece



## **Objective**



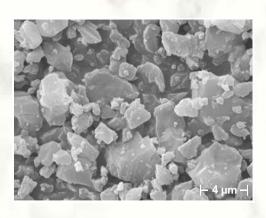
rejects form the past and current activities from

Eastern Macedonia as fillers based on laboratory

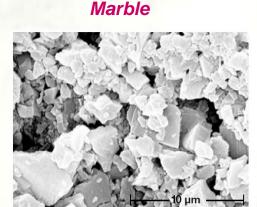
analysis and also on market research mainly of the

current domestic market of fillers...



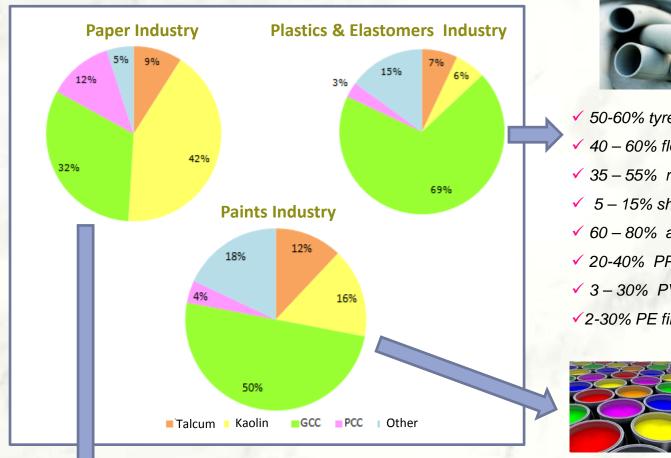

### Fillers - 1




- A filler is a substance consisting of particles which is virtually insoluble in the application medium and which is used to enlarge the volume, to achieve or improve technical properties and/or to influence optical characteristics (DIN 55943)
- Raw Materials: globally, the most commonly used fillers:
   Ground Calcium Carbonate (GCC)> Precipitated Calcium Carbonate
   (PCC)> carbon black> kaolin > talcum



Chalk




Limestone



### Fillers - 2







- √ 50-60% tyres production
- √ 40 60% floor covering
- ✓ 35 55% roofing sheets
- √ 5 15% shoe soles
- √ 60 80% arpets
- ✓ 20-40% PP garden furniture
- √ 3 30% PVC pipe production
- √2-30% PE film



- √ 50-70% emulsion paints
- √ 70-80% plasters and stoppers
- √ 30 40% road-marking paints
- √ 10 20% powder coatings



- √ 12% for newsprint
- √ 35% for Supercalendered papers

### Marble waste rock, Greece



- Mining waste has become a major concern for EU since it accounts for 30% of the total waste
- Production of marbles → Waste rocks equal to 95% of extracted rock.
- The region of Eastern Macedonia (constitutes the most important quarry center of the country where the problem of rejection of marble waste rock is particularly acute.
- IGME investigating the possibility for feasible comanagement of the wastes.
- Ideal candidates as raw materials for the production of added-value products (for the production of fillers) in the market of industrial minerals.



### Methodology - 1



- Conduction of domestic market research.
- Hand samples' collection of 3-5 kg weight each, correspondent to the materials rejected in the different quarrying sites of six major sub-areas in Eastern Macedonia Thrace: 1. Disvato, 2. Stenopos, 3. Komnina, 4. Limnia, 5. E. Falakro, 6. Kechrokambos.
- Targeted bulk sampling by collecting samples of 500kg each,
   representing the six sub-areas

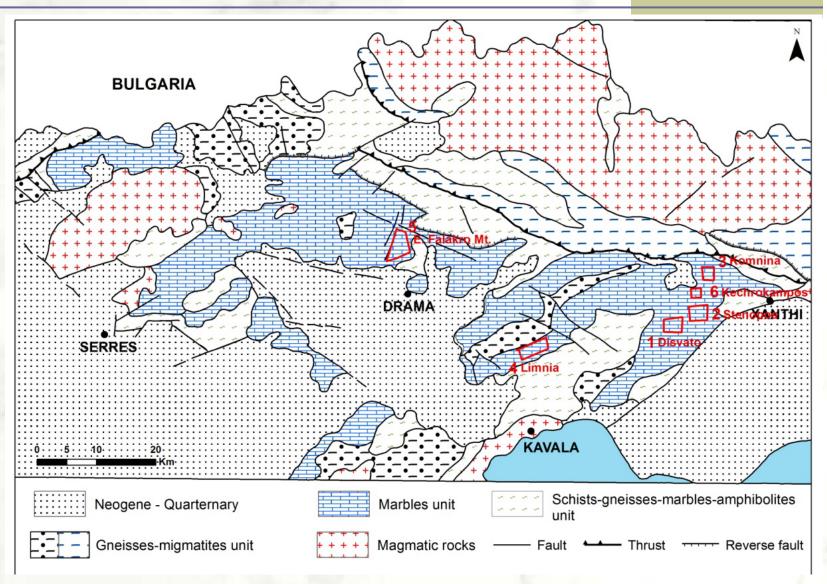






### Methodology - 2








- CaCO<sub>3</sub> content based on XRF measurements, mineralogical examinations and chemical analysis
- Abrasion behaviour with an Einlehner Abrasion
   Tester and
- Whiteness by measuring the reflectance factor R,% with a spectrophotometer.

# Methodology - 3









# Results – PART A - Market Study



### **Domestic Fillers Producers**





- DIONYSSOMARBLE
- \* IONIAN KALK SA
- MICROFILL SA
- KARBOKAL SA
- ❖ OMYA HELLAS SA.
- ❖ WHITE MINERALS SA
- **❖ INDUSTRIAL MINERALS SA**

### **DIONYSSOMARBLE**



### Marble waste rock and microcrystalline limestone







| Trade name:         | Fineness                |                         |         |      |                                                                                   |  |  |  |
|---------------------|-------------------------|-------------------------|---------|------|-----------------------------------------------------------------------------------|--|--|--|
| NOVOCARB            | d <sub>0,97</sub><br>μm | d <sub>0,50</sub><br>μm | %<2     | γ*   | Applications                                                                      |  |  |  |
|                     |                         |                         |         |      | Uncoated                                                                          |  |  |  |
| No 10               | 8 - 12                  | 3 - 5                   | 25 - 35 | 98.0 | Paints, Plastics and Adhesives                                                    |  |  |  |
| No 20               | 16 - 20                 | 4 - 6                   | 14 – 26 | 97.5 | Paints, PVC, Adhesives, Stucco with polyester base                                |  |  |  |
| No 25               | 23 - 27                 | 5 - 8                   | 12 – 18 | 97.0 | Paints, PVC, Adhesives, Stucco with polyester base                                |  |  |  |
| No 40               | 38 - 42                 | 11 – 14                 | 7 - 10  | 97.0 | Paints, Plastics, Carpets, Tyres, Insecticides, Pesticides                        |  |  |  |
| No 60               | 58 – 62                 | 12 – 18                 | 5 - 8   | 96.5 | Acrylic stucco, Carpets, Detergents, Insecticides, Pesticides, Tyres              |  |  |  |
| No 80               | 78 - 82                 | 21 - 24                 | 5 - 7   | 96.0 | Acrylic stucco, Carpets, Detergents, Insecticides, Pesticides, Fertilisers, Feeds |  |  |  |
| No 120              | 115-125                 | 30 - 35                 | 4 – 6   | 96.0 | Carpets, Detergents, Insecticides, Pesticides, Fertilizers, Feeds, Tyres          |  |  |  |
| SoftGrade<br>no 100 | 58 – 62                 | 12 – 18                 | 5 - 8   | 96.0 | Putties, Roofs covering, Films for greenhouse covers                              |  |  |  |
| Coated              |                         |                         |         |      |                                                                                   |  |  |  |
| No 10c              | 8 - 12                  | 3 - 5                   | 25 - 35 | 98.0 | Cable, PVC tube, Paints                                                           |  |  |  |
| No 20c              | 16 - 20                 | 4 - 6                   | 14 – 26 | 97.5 | Cable, PVC tube, Paints                                                           |  |  |  |
| No 25c              | 23 - 27                 | 5 - 8                   | 12 – 18 | 97.0 | Cable, PVC tube, Paints                                                           |  |  |  |

0.35% MgO 0.75% 0.07%  $Fe_2O_3$ Mn<sub>2</sub>O<sub>3</sub> 0.01%

### **IONIAN KALK SA**



### Microcrystalline limestone

| Trade Name:<br>IOKAL | Top<br>cut<br>d <sub>97</sub> µm | Median<br>size<br>d₅oµm | L*   | Y<br>(%) | Abrasion<br>Einlehner<br>mg |  |  |  |  |
|----------------------|----------------------------------|-------------------------|------|----------|-----------------------------|--|--|--|--|
| Uncoated             |                                  |                         |      |          |                             |  |  |  |  |
| ULTRA FINE           | 3.5<br>(d <sub>98</sub> )        | 0.75                    | 98.5 | ≥96.0    | 2.3                         |  |  |  |  |
| SPECIAL CHALK        | 17.5                             | 2.3                     | 96.5 | ≥92.0    | 8.0                         |  |  |  |  |
| TYP 5C               | 7                                | 1.9                     | 98.5 | ≥95.5    | 4.2                         |  |  |  |  |
| TYP 10C              | 10.0                             | 2.4                     | 98.0 | ≥95.5    | 5.6                         |  |  |  |  |
| No 20                | 20.0                             | 3.7                     | 98.0 | ≥94.5    | 11.4                        |  |  |  |  |
| No 40                | 30.0                             | 4.5                     | 98.0 | ≥94.0    | 14.5                        |  |  |  |  |
| KALKOLIN             | 32.0                             | 6.0                     | 96.0 | ≥90.0    | 11.0                        |  |  |  |  |
| No 63                | 48.0                             | 6.5                     | 97.0 | ≥93.0    | 21.1                        |  |  |  |  |
| TYP RL               | 50.0                             | 7.0                     | 97.5 | ≥93.5    | 26.4                        |  |  |  |  |
| No100                | 63.0                             | -                       | 96.5 | ≥93.0    | 19.0                        |  |  |  |  |
|                      | Coated                           |                         |      |          |                             |  |  |  |  |
| ULTRA FINE           | 3.5<br>(d <sub>98</sub> )        | 0.75                    | 98.5 | ≥96.0    | 2.3                         |  |  |  |  |
| TYP 5C               | 7                                | 1.9                     | 98.5 | ≥95.5    | 4.2                         |  |  |  |  |
| TYP 10C              | 10.0                             | 2.4                     | 98.0 | ≥95.5    | 5.6                         |  |  |  |  |
| TYP 15C              | 13.5                             | 2.9                     | 98.0 | ≥95.0    | 8.3                         |  |  |  |  |
| IOKALITA             | 10.0                             | 3.7                     | 97.5 | ≥94.0    | 6.5                         |  |  |  |  |
| KALKOLIN             | 23                               | 4.5                     | 96.0 | ≥90.0    | 11                          |  |  |  |  |

 $CaCO_3$  99 %  $SiO_2$  0.05% MgO 0.15%  $Fe_2O_3$  0.01%





### Other Greek filler companies



| Raw Material                                  | Trade<br>Name | Median<br>size<br>d₅o μm | Top cut<br>d <sub>97</sub> μm | Whitness<br>L* | Main Applications                  |  |  |  |  |
|-----------------------------------------------|---------------|--------------------------|-------------------------------|----------------|------------------------------------|--|--|--|--|
| Uncoated CaCO₃ grades – MICROBLANC            |               |                          |                               |                |                                    |  |  |  |  |
|                                               | X-treme       | 1.0                      | 5                             | 98.0           | Paints as TiO2 extender, jnjpaper  |  |  |  |  |
|                                               | 1             | 1.6                      | 7.5                           | 97.5           | Paints, PO/PE masterbatch          |  |  |  |  |
|                                               | 2             | 2.0                      | 10                            | 97.0           | Paints, Paper, Food                |  |  |  |  |
| Very white<br>Calcite of                      | 3             | 3.5                      | 15                            | 96.5           | Paints, Sealants                   |  |  |  |  |
| highest purity                                | 5             | 4.5                      | 22                            | 96.5           | Paints, Sealants, Adhesives, Food  |  |  |  |  |
| inglicatpunty                                 | 130           | 85                       | 300                           | 93.0           | Paints, Adhesives, Putties         |  |  |  |  |
|                                               | 20            | 11                       | 85                            | 93.0           | Adhesives, Putties, Glass, Rubber  |  |  |  |  |
|                                               | Matting       | 24                       | 55                            | 95.5           | Emulsion paints as matting agent   |  |  |  |  |
| Double Coated CaCO3 grades – ZETAFIL          |               |                          |                               |                |                                    |  |  |  |  |
|                                               | cst 1         | 1.1                      | 3.5                           | 98.0           | PVC window profiles                |  |  |  |  |
| Very white                                    | cst CA        | 1.7                      | 6.5                           | 97.5           | PVC profiles, pipes, cables, PO MB |  |  |  |  |
| Calcite coated                                | cst 2         | 3.0                      | 10                            | 97.0           | Masterbatch, PVC pipes, cables     |  |  |  |  |
| by Stearic acid                               | cst3          | 3.5                      | 14                            | 97.0           | Masterbatch, PVC pipes, cables     |  |  |  |  |
|                                               | MST           | 5.5                      | 22                            | 96.5           | PVC pipes, Solvent based paints    |  |  |  |  |
| Talcum grades – ZETATALC                      |               |                          |                               |                |                                    |  |  |  |  |
| Extremely white<br>macrocrystalline<br>Talcum | EW 10         | 4.0                      | 13                            | 97.0           | Paints, PO/PE masterbatch          |  |  |  |  |
|                                               | EW 20         | 6.0                      | 22                            | 96.5           | Paints, PO/PE masterbatch          |  |  |  |  |
|                                               | EW 40         | 16                       | 60                            | 95.0           | Paints, Cables                     |  |  |  |  |

#### **MICROFILL SA**

#### **Limestone and Talcum**

 $\begin{array}{cccc} \text{CaCO}_3 & 99.5 \% \\ \text{SiO}_2 & 0.04\% \\ \text{MgO} & 0.32\% \\ \text{Fe}_2\text{O}_3 & 0.01\% \\ \text{Fe}_2\text{O}_3 & 0.003\% \\ \end{array}$ 

OMYA SA and KARBOKAL SA use marble waste rocks as raw material for fillers production

### **Domestic Filler Market Trends**



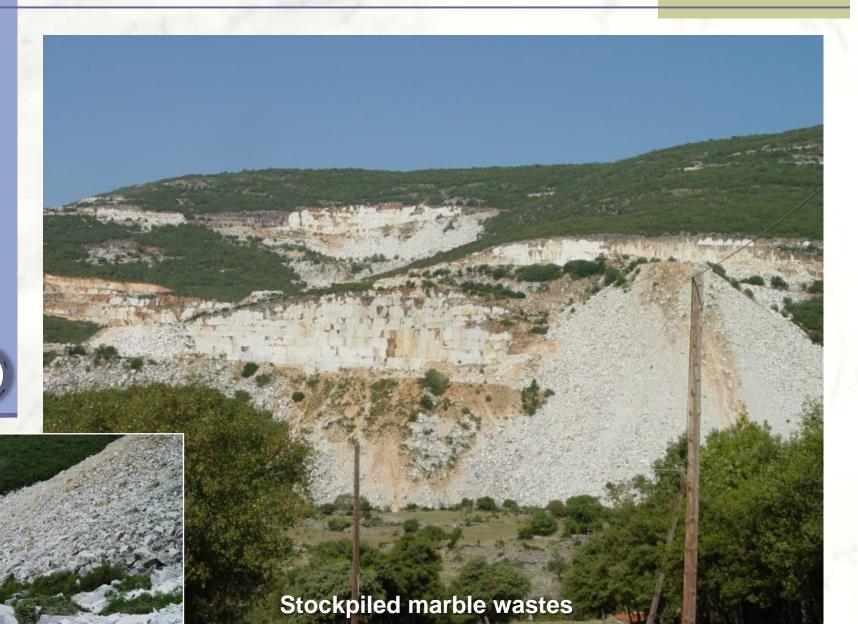
- Today (2015) the total annual capacity of Greek enterprises producing fillers estimated to have remained at the same level as that of 2008, i.e. about 0,8Mt.
- The utilization of marble waste has become a common practice for the production of Ground Calcium Carbonate in Greece.
- Despite the fact that the economic crisis negatively affected the Greek industry, domestic production of fillers showed a slightly upward trend in prices before the crisis (2008), ranging from 35 to 320 €/t.
- It is estimated that over 80% of the production volume is exported.
- As for the domestic use, it is mainly consumed by the paints and plastics industry, since the domestic paper industry uses little mineral fillers.





# Results – PART B – Laboratory Results




# Area of Interest - 4 (E. Falakro)





# Area of Interest – 5 (Stenopos)





# **Area of Interest – 6 (Limnia)**







# **Laboratory results -1**



#### Optical properties and CaCO3 content of the materials in the area under study, based on hand samples

| Sub-area of                                         | Abrasive            | ness (a)            | Optical Properties (b) |                  |                  |                            |                          |
|-----------------------------------------------------|---------------------|---------------------|------------------------|------------------|------------------|----------------------------|--------------------------|
| interest                                            | Einlehner mg        | VWB <sub>120</sub>  | L* (%)                 | a*               | b*               | Tristimulus<br>value Y (%) | CaCO <sub>5</sub> ,<br>% |
| 1. Disvato                                          | 20.2-28.1<br>(24.6) | 66.2-92.1<br>(80.7) | 96.9-97.8              | -0.092 to -0.046 | 0.042 to 0.114   | 92.2 - 94.5                | 99                       |
| 2. Stenopos<br>(white)                              | 26.3-29.6<br>(27.9) | 86.2-97.0<br>(91.5) | 97.6-98.2              | 0.001 to 0.052   | -0.027 to 0.592  | 93.9 - 95.6                | 98-99                    |
| 3. Komnina<br>(white)                               | 24.6-28.2<br>(26.6) | 80.7-92.5<br>(87,2) | 98.3-98.4              | 0.020            | 0.564 to 0.695   | 95.7 - 95.9                | 99                       |
| Limnia (white and semi-white varieties)             | 23.5-29.0<br>(25,7) | 77.0-95.1<br>(84.3) | 96.8-98.1              | -0.098 to 0.088  | -0.229 to 0.632  | 90.0 - 95.2                | 99-100                   |
| 5. E. Falakro<br>(white & semi-<br>white varieties) | 25.3-28.0<br>(26.7) | 83.0-91.8<br>(87.5) | 96.5-98.5              | -0.077 to 0.075  | -0.019 to 0.0556 | 91.2 - 95.8                | 98-99                    |
| 6. Kechrokambos<br>(white)                          | 24.7                | 81                  | 98.3                   | 0.020            | 0.499            | 95.7                       | 98                       |



#### Optical properties and CaCO3 content of the materials in the area under study, based on bulk samples

|                        | Abrasiveness (*) |                    | Optical Properties (b) |             |            |             |        |
|------------------------|------------------|--------------------|------------------------|-------------|------------|-------------|--------|
| Sub- area of interest  | Einlehner        | VWB <sub>120</sub> | L* (%)                 | a*          | b*         | Tristimulus | CaCO₃, |
|                        | mg               |                    |                        |             |            | value Y (%) | %      |
| 1. Disvato             | 14.6             | 47.9               | 97.4                   | -0.0185     | 0.4757     | 93.6        | 99     |
| 2. Stenopos (white)    | 17.5             | 57.4               | 97.4                   | 0.0376      | 0.8250     | 93.4        | 98     |
| 3. Komnina (white)     | 18.1             | 59.3               | 98.2                   | 0.0714      | 0.8780     | 95.4        | 98     |
| 4. Limnia (white and   | 15.9             | 52.1               | 97.3                   | -0.0686     | 0.3419     | 93.2        | 99     |
| semi-white varieties)  | 15.5             | 32.1               | 57.5                   | -0.0000     | 0.5415     | 33.2        | 33     |
| 5. E. Falakro (white & | 17 (B)           | 55.7 (B)           | 96.2 (B)               | -0.1334 (B) | 0.0610 (B) | 90.5 (B)    | 99 (B) |
| semi-white varieties)  | 19.3 (A)         | 63.3 (A)           | 95.9 (A)               | -0.1116 (A) | 0.0235 (A) | 89.8 (A)    | 99 (A) |
| 6. Kechrokambos        | 19.0             | 62.3               | 97.9                   | 0.0439      | 0.6930     | 94.8        | 99     |
| (white)                | 13.0             | 02.3               | 57.5                   | 0.0433      | 0.0530     | 34.0        | 33     |

# **Laboratory results - 2**



### Mineralogical composition of the materials in the area under study

| Sub- area of    | Mineralogical composition |             |                           |  |  |  |  |
|-----------------|---------------------------|-------------|---------------------------|--|--|--|--|
| interest        | Calcite, %                | Dolomite, % | Others (mainly quartz), % |  |  |  |  |
| 1. Disvato      | 96.9-97.3                 | 2.4-2.6     | 0.3-0.8                   |  |  |  |  |
| 2. Stenopos     | 96.3-96.9                 | 2.7-3       | 0-0.7                     |  |  |  |  |
| 3. Komnina      | 97-97.3                   | 1.7-2.3     | 0.6-1                     |  |  |  |  |
| 4. Limnia       | 97-98%                    | 1.5-2.5     | 0-1                       |  |  |  |  |
| 5. E. Falakro   | 95-97.5                   | 1.3-3.1     | 1-1.3                     |  |  |  |  |
| 6. Kechrokambos | 96.5                      | 1.5         | 0.7-1.8                   |  |  |  |  |

### **Conclusions - 1**



- The quarrying activity for marbles' production is still a significant industrial sector in Greece, however resulting in large amounts of waste rocks equal to 95% of the extracted rock.
- The GCC fillers sector has remained fundamentally sound with a total annual capacity (2015) equal to 0.8 Mt.
- The utilization of marble waste has become a common practice for the production of Ground Calcium Carbonate in Greece.
- Eastern Macedonia, is of great interest due to abundant waste materials coming from the extraction of white calcitic marbles.



### **Conclusions - 2**



Taking into account the abundance of waste marble rocks of Eastern Macedonia and the laboratory results concerning the chemical and mineralogical composition of the materials under examination, showing a CaCO<sub>3</sub> content higher than 98%, as well as the reflectance factor measurements which have values greater than 90%, utilisation of these materials looks a promising and challenging opportunity in both financial and environmental terms.



# Thank you for your attention





The authors would like to thank the National Strategic Reference Framework (NSRF 2007 – 2013) for funding the project entitled: "Exploration and Evaluation of selected non-energy mineral raw materials in the country for sustainable operation of extractive industries (MEOPY)".

