-->

Δευτέρα, 8 Ιουλίου 2019

Europe’s dependence on Critical Raw Materials (CRM) and growing supply needs for battery minerals-based value chains (i)

This contribution addresses and reviews current and progressing CRM supply trends and needs, potential mineral resources targets invented, and related key value chain developments with the EU industry in focus, by mainly looking for answers to the following questions.
  • Why and how a European CRM list?
  •  What is the current state and what needs to be done in the fields of CRM Economic Geology and related value chains?
  • Bottlenecks that today make CRM industry perspective and future difficult to be predicted and any foresight studies undertaken becoming uncertain; the example of cobalt
  • Which are then the risks, impacts and consequences that might be emerged and which could be the solutions? 

Current CRM list

Critical Raw Materials are both of high economic importance for the EU and vulnerable to supply disruption. These limitations and conditions became the major elements of the methodology applied to provide the 2017 criticality assessment, with the 26 raw materials shown below, excluding lithium.

European mineral raw material challenges

The mining sector and the mineral processing sector are vital to securing the supply of metals extracted in a sustainable manner to be used in high-tech value chains and to address challenges considering that,
  • The mineral value chain spans from geological exploration, mining and processing to the recycling of metals.
  • There is a strong environmental commitment both during operation, as well as for the reclamation of land used for mining, embedded in value chain.
  • The transition to a low-carbon, fossil-free sustainable Europe and the green economy is a prime societal challenge.
  • The electric infrastructure as well as energy storage systems, renewable energy power plants and vehicles have a tight implementation agenda.
  • Fossil-free aggregate production to build new transport infrastructure as well as new green buildings has a central role
Strategic mineral-based value chains for the EU

The EU, and apparently the rest of the world, is challenging a growing demand for mineral raw materials stemming mainly from the emerging digital revolution, the innovation to e-mobility and artificial intelligence technologies, and the transition towards a low-carbon and low-waste future. This development is triggering and enabling reshaped or new value chains of mineral raw materials industries from the upstream to the downstream, e.g. from exploration, mining, processing and products along the value chain to end-use manufacturing. The intensity on the economy and society, in securing the increasing resources potential and supply needed, will continue remaining notably high, particularly in the case of critical raw materials which by almost 60% are related to high-growth enterprising.

The six identified strategic mineral-based value chains require sustainable supply of certain raw materials, beyond only the critical ones.

- Renewable energy –Wind & PV value chain: Al, Cu, Pb, Nd, Pr, Dy, B, Mn, Ni, Cr, Fe, Mo, Nb, Ag, Zn, Ga, Se, Te, Cd, In, Si, Sn

- Grids value chain: Cu, Al, Ni, Fe, Si
- Li-ion batteries (LIB) value chain*: Ni, Co, Cu, Li, Al, Mn, V, C-graphite

- Electric vehicles (EVs) value chain*: Ni, Co, Cu, Li, Al, Mn, C-graphite, Fe, Cr, Mo, V, Si, Mg, B, Nd, Pr, Dy

- Robotics value chain: Fe, Al, Cr, Co, Mo, Si, C-graphite, Ti, Ni, Mg, V, Cu, Pb, Ag, Sn, Sb, Bi, Au, Mn, Zn, REE, Li

- Defense value chain: Al, Cu, Pb, Nb, W, Ba, Ga, Li, Rh, V, Be, Ge, Mg, Ta, Zn, Cd, Hf, Mn, Zr, Cr, In, Mo, Sn, Co, Fe, Ni, Ti, Dy, Nd, Pr, Sm, Yb, Au, Pt, Ag, B, Se

Considering the value chains and related raw materials it is found out that,
  • China delivers around half of the raw materials required for all six strategic value chains.
  • China keeps its leading position across all domains (extraction, processing, refining) of CRM value chains.
  • Europe is less dependent further down the industrial value chains.
  • Europe is vulnerable to supply of RM for all mentioned value chain technologies/sectors.
  • LIB is the most vulnerable technology: strong dependency along the whole supply chain.
  • Higher resilience of Europe downstream the supply chain, for example processed materials.
  • Best case for Grids, as Europe is self-sufficient on the raw materials needed.
  • The renewable energy, Li-batteries and electric vehicles value chains are closely related and interlinked, having a crucial role in implementing the Paris declaration and the SDGs, as well as to address a low-carbon and green economy future.

Electrification and artificial intelligence

It is evident that electrification and artificial intelligence make top priorities of EU’s industrial strategy and related sustainable development, with respect to mainly SDGs and climate change agenda. Raw materials and advanced materials are the key enablers for the transition in the energy and mobility sectors. Since electrification is the basis for the transition from brown to green economy to happen, there will be enormous amounts of electricity needed to be produced, of course, from renewable sources. Having all this in mind and in relation to all outlooks showing a strongly growing demand for energy and increasing requirements for responsible mining, two more value chains seem to be strategic targets,

· Renewable energy –Wind & Photovoltaics (PV) value chain, and
· Robotics value chain

The example of cobalt . Although any kind of forecasting is uncertain all scenarios indicate that cobalt demand for Li-battery manufacturing will exceed the supply until 2030, given the total number of more than 110 million electric cars expected to be produced by then. This anticipates also an exponential growth in the demand for other battery raw materials like nickel, aluminium, copper, graphite, lithium and manganese minerals. Under average conditions around 64.000 tonnes of additional cobalt will be needed to cover global demand in 2030. By then internal EU supply can meet only 15% of European demand in the electric vehicle sector, this way leading to a growing gap between internal supply and demand. In the case of graphite, the demand will grow from 5.700 tonnes today to 157.400 tonnes by 2030. It is obvious that mineral raw materials availability and stable supply is strongly influencing and determining the large-scale deployment of EVs. Of course, cobalt availability may be available but most probably at the expense of increased prices for battery manufacturers and continued dependence on unethical supplies from Democratic Republic of Congo (DRC). To avoid it future mobility would have to rely on cobalt extracted within the EU by opening of new mines and recovering it through recycling.

By Dr N. Arvanitidis, Green Minerals

Europe’s dependence on Critical Raw Materials (CRM) and growing supply needs for battery minerals-based value chains (ii)